
is consistent with the physics of the magnetization in a ferrosuspension. For an applied 
field the magnetization of the ferrosuspension in the direction of the field instantly (for 
~I = O) takes the value mlo because of Neel relaxation. But over a time of order ~2 the 
magnetization of the ferrosuspension increases to the value m=o because of Brownian relaxa- 
tion. In the equations given here, terms involving the coefficient K3 in the equation of 
state (3.3) correspond to the effect of internal fields on the magnetization m= and m2 due 
to the existence of magnetizations m~ and m2, respectively. This recalls the situation in 
antiferromagnets where there are also two effective fields resulting from the magnetizations 
m~ and ms of the sublattice~. 
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EVOLUTION EQUATION FOR THE VORTEX DISTRIBUTION FUNCTION 

IN THE PLANAR CASE 

Yu. N. Grigor'ev UDC 532.517 

In [1-5] a system of linear vortex lines in an ideal fluid is used as a model of two- 
dimensional turbulence. There are examples which support the plausibility of this model; 
in particular, results have been obtained with the model which are interesting from the point 
of view of the statistical theory of turbulence [i], dynamical meteorology [4], and numerical 
modeling of the streamlining of bodies at large Reynolds numbers [5]. 

In the above papers the.system of vortices was studied in a state of statistical equili- 
brium. But in real hydrodynamic turbulence, nonequilibrium states of the fluid are import- 
ant as well, where the evolution is Characterized by statistical irreversibility. It is 
therefore of interest to consider nonequilibrium evolution in model systems by the methods 
of kinetic theory [7, 8]. Some asymptotic solutions of the BBGKY hierarchy for a system of 
linear vortices have been considered in [I]. 

In the present paper, the nonequilibrium statistical properties of this model are stud- 
ied using the Liouville equation for an ensemble of vortex lines. Analysis and summation 
of the formal time-dependent perturbation series are carried out with the help of the dia- 
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grammatic techniques of Prigogine and Balescu. In order to suppress the divergence at large 
values of the time, the renormalization procedure is used. We obtain a closed evolution equa- 
tion for the vortex distribution function. The equation contains both the convective Helm- 
holtz operator and a quasilinear elliptic operator of second order with nonlocal coefficients. 
The equation takes into account explicitly the physical effect of variable sign in the vor- 
tex viscosity, because the local sign of the dissipative matrix is determined by the instan- 
taneous vortex distribution. It is shown that in the absence of internal boundaries, the 
evolution everywhere goes in the direction of increasing informational entropy and the vor- 
tex distribution approaches a stationary distribution. 

i. In the infinite x, y plane, we consider a system of N point vortices with identical 
circulation strengths ~. The Cartesian coordinates of the vortices (xi, yi) , i = I, 2, ..., 
N are canonically conjugate with respect to the Hamiltonian [6] 

N 

HN = - -  E V o  (I r~ - -  r~ I), V~j = I n  I r~ - -  r j  1. 

The dynamical equations for the system of vortices are 

drJdt------• • i : 1 . . . .  , N, (!.I) 

where e is a unit vector normal to the plane of motion of the vortices. 

Let fN(r:, r~, ..., rN, t) be the joint probability density distribution for the system 
of N vortices~ We have the normalization condition 

y dr l  " "" ( 1 . 2 )  drNfiv I. 

A s t a t i s t i c a l  d e s c r i p t i o n  o f  t h e  m o t i o n  o f  t h e  s y s t e m  e q u i v a l e n t  t o  ( 1 . 1 )  i s  g i v e n  b y  t h e  
L i o u v •  e q u a t i o n  [7]  w h i c h  we w i l l  u s e  i n  o n e  o f  two f o r m s :  

N N 

af__._~at = - - •  X ' ~  viV~f-(V~ - -  Vi) IN = -- • ~ Lij/N - -  -- • 
i<i i<~ 

N 

i< . i  

(1.3) 

(1.4) 

Here ~. {Vij , fN}i are the Poisson brackets calculated with respect to (xi, Yi)" 

We will assume that the total vorticity in the fluid is equal to zero; this is analo- 
gous to the quasineutrality condition in a plasma [7]. Then the first two BBGKY equations 

obtained from (1.4) have the form 

OFl(rl't)ot -~ zc[{*(r l ' t ) 'Fl (r l ' t )} -~-  Sdrz{V12'F2(rl'r2't)" - - F l ( r l ' t )  Fl(r2"t)}]; ( 1 . 5 )  

oF~ (r 1, r~ t) 
ot - -  • {H2'  F2} + • [{~ (r~, t) + ~ (r2, t), F 2 ( r~ ,  r 2, t ) }  

( 1 .  6)  
-}- y dr  3 {V13 Jr- V23 , F 3 (rl ,  r2, r3, t) - -  F 1 (r3, t) F 2 (r l ,  r2, t)}]. 

Here c is the average vortex density, ~cF~ (r, t) physically is a local vorticity, de- 
fined in terms of the statistical ensemble fN(t) [I, 4]. In our case the vorticity for a 
system of point vortices has the form 

co (rTt) = •  5 ( r -  r 0 ,  F l ( r ,  t) = ~ - 1  S d r y . . ,  d r x ] N ( r , r  2 . . . . .  rN, t). 
i = l  

Therefore, in the limit N, ~-+ oo, N~-1-+c 

N 
<co(r , t )> = l im • i ' d r l . . - d r ; r  . . . . .  r ~ , t ) _ - -  lira 

~,~-~oo ~ i : l  ~ , ~  
x Nf~ - t  F1 (r,  t) ---- •  1 (r ,  t). 
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The function 

(r, t) = S dr2Vl~n (re' t) 

can be determined in terms of the factor n(r, t) = F,(r, t)--l. 

The Hamiltonian H N contains only terms of the form V~.~- so that the system of vortices is ~J 
strongly interacting. Thus, in (1.5) we have {H:, F~} - 0 and this complicates the construc- 
tion of a closed evolution equation for F: by the usual methods [7, 8]. In [i] the analysis 
of the BBGKY equations for point vortices was based on a formal asymptotic expansion in a 
small parameter, which was introduced as a singularity in the first term of the equation for 
F s with s~ 2 (cf. (1.6)). The derivation of a closed equation for F1(r, t) was not dis- 
cussed. 

2. The derivation of closed kinetic equations in strongly interacting systems is usually 
based on various assumptions [9, i0], which allow one to isolate the essential features of 
the required equations and serve as a basis for doing a formal asymptotic analysis. The re- 
sults are then tested on a real system. 

In our case, because • (r, t) is the average local vortex density in turbulent flow, 
physically the equation for F~ should contain the convective Helmholtz operator [ii]. 

It is easily shown (cf. [12]) that in the limit x + O, c -> co when the average vorticity 
is bounded (xc § 0(i)) Eq. (1.6) and the succeeding equations of the chain are satisfied iden- 
tically by distributions of the form 

=Ii f~ /~ (ri, ~), 
i = l  

if Ft satisfies the equation 

dF~(r, t)/dt = •162 t), Fa(r, t)} ~ --U(r ,  t).vF~(r, t), ( 2 .1 )  

where U (r, t) = uce • V" f d r y  ([ r -- rt  1) n (q ,  t) 

is the average hydrodynamic velocity induced by the locally noncanceling vorticity. Then 
(2.1) has the form of a self-consistent field equation [7] and (within the uniform factor • 
reduces to the Helmholtz equation for the vortex field in the planar case. 

Using the above remarks we assume the following asymptotic relations between the parame- 

ters of the system: 

• , - ,  0 ( t ) ,  x , - .  0 ( 8 ) ,  ~ << 1. ( 2 . 2 )  

Using the Bogolyubov method with (2.2) one can obtain a sequence of closed equations for Ft 
in which (2.1) will be the zeroth-order equation. 

Indeed, following [7], we introduce the expansion 

Fs (rl  . . . .  s rs, t) = F~ ~ (r 1 . . . . .  r~, F1) + • ~) (r 1 . . . . .  rs, F1)-~-..., s /~  2, 

where it is assumed that F~ i).only depends on time implicity through the function P~(r, t). 

We look for an evolution equation for FI in the form 

(2,3) 

oF~(r, t)/Ot = Lo(F~) + ~Lt(F~) + . . . .  

Then from (1.5) and (2.3) it follows that 

Lo = [{r (n ,  t), (n ,  t)} + [ V . ,  ~ F0  - -  ( r .  t) (to, t))], 

L, (F,) -- • S dr, {V,,, F(~')(rt, r,, F~)] . . . .  

(2.4) 

(2.5) 
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The operation of differentiation of F with respect to time can be written with the help of 
(2.3) and (2.4) in operator series fo~m 

OF~ 6F~oF~-.-DoF~~215 . q-DoFfS))+ . . . .  s>~2, ( 2 . 6 )  
Ot 6F~ Ot 

where Lo(Fx)  appears in operator Do, L~(Fx) in operator Dz, etc. 

Substitution of (2.3) and (2.6) in (1.6) gives to zero order in u: 

DoF~~ • t) 4_~(r.2, t)~ (o) r ' (o) r F1) Fl(r3 ,  t ) F~ ~ ~- . F~ ( , , r2 ,F1) j -~-~dr3{Vl8 G',V~3, F~ ( a, r2, r3, - -  (r~,r~,F0} 1. 

It can be verified directly that for 

8 

F (~ ~r 
{ = 1  

the solution of (2~ will be 

2 

~ = I I  t). 
i = l  

And in view of the definition of Do and (2.5) we have 

DoFF ) (rl, r~, F1) = F~ (rl, t) L 0 (r2, t) + F I (r~, t)  L0 (rl, t) = F 1 (rli t) n c X  

X{~ (r~, t), F 1 (r~, t)} q- F 1 (r 2, t) zc {4 (rx, t), F 1 (rl, t)}, 

f rom wh ich  i t  f o l l o w s  t h a t  t h i s  fo rm f o r  F2 (~  r e d u c e s  ( 2 . 7 )  t o  an  i d e n t i t y .  At t h e  same 
time~ substitution of the solution of (2.7) in the zeroth-order equation (2.4) gives (2.1). 

Thus, relations (2J2) between the parameters of the system lead, at least in the zeroth- 
order approximation, toga reasonable physical result, and this provides some justification 
for their use in higher order approximations. 

The procedure used here is formally identical to the method of Bogolyubov in a plasma. 
It is well known that for a spatially nonuniform system of this kind, the Bogolyubov method 
leads to extremely unwieldy calculations in the higher orders, and it is necessary to intro- 
duce additional assumptions. Therefore, we use below the equivalent method of Prigogine and 
Balescu which has the advantage that it allows one to specify the orders of the characteris- 
tic times over which the different terms of the required equations are important. In [9, i0] 
this method was applied to a strongly interacting system. 

3. We use the Prigogine and Baiescu method in the resolvent formalism. The notation used 
is the same as in [8]. The starting point is a Fourier analysis of the class of functions 
periodic inside a square of area ~. The N-vortex distribution function fN and the vortex in- 
teraction potential Vij are expanded in Fourier series 

/.~ (r 1 . . . . .  r~, t) = ~-N 90 ~- W ~ ~ p (k, t) eikrj-~ . . .  ; ( 3 . 1 )  

V (I rm - -  r j  [) = 4 ~2~-1 ~ V (l) ea(rm-q), ( 3 . 2 )  
l 

where kj = 2~gZ1/2nj, and nj is a vector whose magnitude is an integer. 

The normalization condition (1.2) gives 0o = i. The Fourier coefficients in expansion 
(3.1) are related to the reduced distribution functions. In particular 

( S ' ] ( r , t ) = c F  l (r , t )=c 1 +  dke~krp (k, t)). 

With  t h e  h e l p  o f  ( 3 . 1 )  and ( 3 . 2 ) ,  one  can  o b t a i n  a F o u r i e r  r e p r e s e n t a t i o n  o f  t h e  f o r m a l  
s o l u t i o n  o f  t h e  L i o u v i ! l e  e q u a t i o n  ( 1 . 3 )  i n  t h e  fo rm o f  a p e r t u r b a t i o n  s e r i e s :  

oo 

p({k}t) = ~) ~;~ U-~I ( {k} IRo(z )[LRo(z ) l~ l{k ' }>p({k ' } ,  0). (3.3) 
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The matrix elements in (3.3) are defined using plane-wave basis states. In particular 

<{k}lL]{k'}> = ~,. <{k}lLnil{k'J>~ (3.4)  
n<$ 

<{k} [ Lnil {k'}> = 4~2f~-~e • i (k~ - -  k~) V ( I k: - k~ I) i (k~ - -  k~) 5k'~k'n. ~-~n--~ ~ ' ~#n,~II 5k~_~ ~- 

The ma t r i x  e lement  of the unper tu rbed  r e s o l v e n t  Ro(z) i s  t r i v •  
t 

<{k} I ~o (z) l {k'}> ---- -- "W {~{k}-{k"). 
(3.5) 

The structure of Eqs. (3.3)-(3.5) permits a graphical representation using the same dia- 
grams as in [8]. From (3.4) for the matrix element of the interaction operator, it follows 
that in our case (cf. [8]) there are three nontrivial single-vertex diagrams (see Fig. i). 
The matrix elements corresponding to these are 

<kn, kj I L ~  I k'n> = 4~2Q-Xe X i (k~ - -  k,~) V ([ k~ --  kn I) gk~Sk~_kn_kj, 

<k,~, I LnJ I k~, kj> ---- 4~2~-1e • i (k~ -- kn) V ( k' k' " ' I ~ - k ~ l ) ~ (  n - - k j )  5 ,  , ~, 
�9 k,j+kn--kn 

<kn, kj ]L~ I k,~, k~> = 4 ~ - ~ e  x i (k~ -- k~) V ([ k~ -- k,~ l) i (k~-- k~) ~ , , . 
kn+kj--kn--k j 

(c) 

(D) 

(E) 

From these relations and the representation (3.3) vertices C, D, and E have topological indi- 
ces equal to 0, i, and 0, respectively [8]. 

4. We consider the characteristic times for our model. Because we are modeling two- 
dimensional turbulence, we can take as characteristic randomization processes the intensities 
e and n in the cascade processes [13]. The parameters x, c,E, n give the dimensionless com- 
bination F = c:/2~-:/2~t]2. Hence we represent quantities with the dimensions of time in the 

form 

Tm = sl/~(~c~)-~2F m. (4.1) 

With m = --i we have ~i = (xc)-: from (4.1) and for m = 0 we have ~r = (z2c)-I/2el/2D -I/2" 
The time T i is the circulation period of a pair of vortices with mean separation c -~/~ and 
can naturally be identified with the characteristic interaction time. The time Tr, involving 
the intensity of the cascade processes, can be considered as a characteristic relaxation time. 
If n ~ s ~ O(i) it follows from (2.2) that zi << Tr. But in real turbulence these times can 
be of the same order. In our case for interactions determining convective transport and 
relaxation from (3.3), only the form of the dependence of T i and Zr on x, c is needed. 

We show that in order to derive (2.1) it is necessary to select from (3.3) and sum all 
contributions in p(k. t) proportional to ~c) n. As in [14] it can be shown that in this case 

all quantities of order (t/~i)n/n! are accounted for. 

The contributions are given by all possible diagrams containing only vertices of type D 
and having one outer line to the left. Transforming from the diagram series of Fig. 2 to the 
corresponding mathematical expression (3.3) gives 

p (kn, t) = (2~)-~ ~ dze-~t I ~ dze-Ut t p(k~ ,O)+  ~ ( - - x ) •  

X ~ < k n l ~ n j , k n ,  k , > { '  i [p~(kn, 0) p(kj, 0 ) + ( _ _ •  x '  ' ~ <k~,kj' ' (4 .2)  • z_~ ----77 
kj #=I km 

_ p O) p O) O) + . . . .  

In order to obtain contributions of the required order, we include on the right-hand side 
only the factorized parts of the Fourier coefficients [8]. 

After differentiation with respect to t, the first term in (4.2) goes to zero according 
to the Cauchy theorem. In the second term the first vertex operator is taken outside of the 
integral sign and the remaining expression is integrated to give a contribution of order 
(• n in p(~, t) p (k~, t). Taking the limit N § ~, ~ ~ ~, N/~ § c we obtain the following 

J 
equations for the Fourmer transforms: 
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~p (k,ot t) = 4~.u.ce • f dkli (k~ --  k) V ( I k --  k~ I ) i (2kt --  k) p (k~, t) p (k --  k~, t). ( 4 .3 )  

The original variables are recovered using the inverse Fourier transform S dke~k'P(k' t)~c -I 

[/(r, t)-- c]------n(r, t). With the help of the substitution 

k --  ]q = k2~ 5 (k~ --  k3) = (4~2) ~1 J" dre ~(k~-k~)q 

the right-hand side of (4.3) can be written in the form 

d r , [ j  ~ dk~e~k2(r-r')ik2V (k~)] [ S ~hr" 

We thus arrive at the equation 

O/(r.t) ot • 2 1 5  drlV( lr- -r  l[)n(r 1,t) V/( r , t )~  

which  i s  i d e n t i c a l  to  (2 .1 )  e x c e p t  f o r  t h e  f a c t o r  c .  

As i s  w e l l  known, a s e l f - c o n s i s t e n t  f i e l d  e q u a t i o n  c a n n o t  d e s c r i b e  r e l a x a t i o n  p r o c e s s e s .  
T h e r e f o r e ,  i n  a d d i t i o n  to  (4 .2 )  we c o n s i d e r  a l l  p o s s i b l e  c o n t r i b u t i o n s  to  p ( k ,  t )  f rom 
'~seudodiagonal" [8] fragments (Fig. 3). 

Formal estimates of the time dependence of these contributions show that after summation 
quantities of order 

~ - "  (t/'~)~' (4 .4 )  

are accounted for, which are important over times of order t ~ T r. However, the procedure 
used above for the derivation of the closed equation for p(k, t) leads in this case to the 
appearance on the right-hand side in (4.3) of an additional non-Markovian term of the form 

t 

I a0~0 (t - 0) p (k, 0), 
0 

where  Go(0) does  n o t  depend  on t i m e .  T h i s  i m p l i e s  t h a t  t h e  v o r t e x  i n t e r a c t i o n  t ime  i s  u n -  
bounded and l e a d s  to  a d i v e r g e n c e  when t § ~.  Again  t h e  e q u a t i o n  does  n o t  d e s c r i b e  r e l a x a t i o n  
p r o c e s s e s  b e c a u s e  t h e  a d d i t i o n a l  terra i s  r e v e r s i b l e  i n  t i m e ,  as  i s  c l e a r  d i r e c t l y  f rom (4 .4 )  
where only even powers of t occur. 

5. The divergence is the consequence of the attempt to describe a strongly interacting 
system by a sequence of binary processes separated in time. The divergence can be suppressed 
if the collective nature of the vortex interactions is taken into account. This can be done 
by renormalizing the propagation function (propagator) [9], which in this case is described 
by a closed equation. 

We consider the diagrammatic representation of the renormalized propagator in Fig. 4. 
Here we take into account contributions from all possible diagonal fragments formed by the 
introduction of the elementary diagrams of Fig. 3a, b between vertices of types D and C. 

The analytical expression for the operator series corresponding to Fig. 4 is given by 

vo 

G (k, t) = (2n) -1 dze-~zt 2~i _ (I) (k, z) -----~z] G (k, 0), G (k, 0) ---- I ,  

where I is the identity operator and 

(D(k, z) = ~ ( ~  • D [Ro(z) L]2mRo(z)Lc Ik>, 
ra=l l  

(5. i) 
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G D j E 

Fig. i 

Fig. 2 

a 6 �9 e 

J n n n 

Fig. 3 

-------= + 

Fig. 4 

+ 

Fig. 5 

P ~12~ 

ptlq~}~ X + Y §  

Fig. 6 

i.e., ~(k, z) is an infinite sum of all possible diagrams (Fig. 5). 

After differentiation of (5.1) with respect to time using the representation of the 
propagator (5.1) and the convolution theorem for the Laplace transform we obtain 

(5. 3) 

We transform the operator series of (5.3) with the help of the factorization theorem of 
Resibois [15]. Each diagram of Fig. 5 can be separated into two independent branches by dis- 
carding the terminal D and C vertices. The diagrams entering ~(k, z) are grouped into clas- 
ses, each of which contains all diagrams having a fixed number of vertices in each branch 
and obtained by all possible permutations of vertices of one branch with respect to vertices 
of the other and conserving their order of appearance in the branches. According to the 
theorem of Resibois the contribution of each class is equal to that of one of the diagrams 
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in which the contribution of the internal part is given by the product of the contributions 
of the independent branches. Summing over the factorized contributions from all classes we 
find from the structure Fig. 5 entering ~(k, z), the sum of contributions of the branches is 
given by the product of propagator contributions (Fig. 4). Therefore series (5.3) can be 
written in the form 

N 
Z (kl, t) = ~] ~ (-- • <k~l Lo t  k~ --  1~, lj> G (k~ --  l~, t) G (lj, t) <k~ -- 1~, lj ] LO I k~>. 

j = l  l 

After taking the limit to infinite space, we obtain the following equation for the renormal- 
ized propagator 

oG (k, t) - -  4~2• J dOP (k,  t - -  O)G(k, 0), 
~ t  = _ ( 5 . 4 )  

0 

P (k, 0) = J dl [el (k - -  21) V 2 (1) elk] G (k - -  1, 0) G (1, 0). 

We consider now all possible contributions of order (• TM, n, m = 0, I,'... in 
0(k, t). The diagrammatic representation is given in Fi~. 6. Here the rectangles denote 
the infinite sum of all possible paths consisting of vertices of type D and the "pseudo- 
diagonal" fragments of Fig. 3. In the second and third groups the outer sums are taken over 
all possible "leading" diagrams. The general features of the derivation of the equation for 
p(k, t) follow the derivation of the equation in Sec. 4. The second and third groups are 
transformed using the Resibois theorem and the convolution theorem for the Laplace transform 
as in the derivation of (5.2) and (5.4). This is made clear if we note that an analytical 
expression equivalent to Fig. 6 is 

and 
oo 

r = dze -~ t  1 ap (k, z) 9 (k, 0) * Ok~k,~ , 
- -  i--'--~ - -  i z  ' 

m = l  { k ' }  

where Dk{kt } is a generalized notation representing all contributions with vanishing correla- 
tions. 

The equation for p(k, t) takes the form 

Op (k,t) = 4 z ~ • 2 1 5  ) K 
Ot, (5.5) 

p (k - -  kl ,  ~) - -  ~g2~2c S dO~ (k, O) 9 (k, t --  O) --  4a2• S dO S dk, Pl(k, 
o o 

k~, 0) p(k , ' ,  t - -  0) 9 ( k - -  k~', t - -  0), 

P ~ ( k , k ~ , 0 ) = J ' d l e •  0) G(l,  0) e •  - - l )  V ( l k ~ - - I  I ) •  

Equations (5.5) and (5.3) are non-Markovian and give closed descriptions of vortex evo- 
lution over times of order T r. 

We take the Markovian limit of (5.5) by first constructing an approximate solution to 
(5.3). We will put Ikl ~ I~l so that the characteristic size of the nonuniformities is close 
to the effective interaction length; this corresponds to the assumption made in the pheno- 
menological theory of turbulence. Writing G(k, t) = G(akt) we can make the substitution G(I, 0) 
_~G(k, 0)~ G(k--;, 0) ~ f. in (5.3), which then becomes an integral equation of convolution type 

OG (k, t) o---'F-- ---- --~ "d0G(k'  t - - 0 ) G ( k ,  0), o~ 2 =  4~2• ~, 
9 

a 2 -~ ~ d l V ~ ( l ) [ l - - c o s 2 ( k ,  l)]l 2, a 2 >  0 .  

(5.6) 
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Solving this with the help of the Laplace transform we find [16] 

G(k, t) ---- (ak t ) - :J l (2akt ) ,  (5.7) 

where J:(x) is the first-order Bessel function of the first kind. It is seen from (5.7) that 
the form of the propagator is as discussed above. When t * 0 we have G(k, t) § I. 

The Markovian limit to (5.5) is taken in the usual way [14]. It is necessary to compute 
contributions given by products of propagators. Again putting Ikl ~ IZI we have [17] 

dOG (k - -  ], O) a (l, O) = (a~l)-~l k - -  l [-!~ dOJ~ (2a  [ k  - -  1 t O) x ( 5 . 8 )  
0 0 

, I" (1_/2) [ /~ / ,k - - ' ,  1 ~ 
•  (2alO) = 2e (1 + I k - -  1 I) r (2) r (3/2) F t /2 ,  3/2, 3, (~ + I k -- 1 I)" --" - ~ '  

where F(x) is the gamma function and F(a, B, Y, z) is the Gaussian hypergeometric function. 

Using (5.8) we perform the inverse Fourier transform in (5.5). The intermediate steps 
are analogous to those used in (4.3). The second and third terms in (5.5) lead to the forms 

- -  4zr2• ~ dkeikr . . . . . .  (x2c)l/2ala-1 j '  dkeikrk2p (k,  t); ( 5 . 9 )  

--/J~2~2C S dkeikr ..... (x2c) 1/2a-1 j'drl {,!'dk2 Oik~'(r-r1>eX (5.10) 

• ik2V (k:) C -- r:) J" j" ( k,ik, -- ,o (k, t) 0 (k. 0}. 
In (5.9) a z  is defined similarly to a in (5.6) and differs only by the additional factor l -~ 

in the integrand. In order to calculate 

C (r - -  r : )  ---- e • ~ dle~'( '-ra)il l-:V (l) = - -  2n  (r - -  r,) i dlIV (1) J1 ( / I  r - -  r l  [) 

a n  e x p l i c i t  e x p r e s s i o n  i s  n e e d e d  f o r  V ( l ) .  H e r e  we u s e  t h e  g e n e r a l i z e d  F o u r i e r  t r a n s f o r m  o f  
t h e  p o t e n t i a l  V ( r )  = i n  r :  

V (l) = l i ra  (4a2) -1  ~ d r e - ~  -~r In r = - -  (2~12) -1. 
I~-,o (5.11) 

Then we have 

C ( r - - r : )  = e •  ( 5 . 1 2 )  

Note that the use of (5.11) in the calculation of (5.6) leads to an improper integral 
which is logarithmically divergent at its upper and lower limits. A corresponding divergence 
O(Z -z) occurs in az at the lower limit. 

The divergence as I § 0 is due to the collective nature of the vortex interactions. 
The divergence can be avoided if in place of V(r) we use an approximation. For example if 
the vortex temperature [18] is positive a satisfactory approximation is given by the MacDon- 
ald function K(r), which is the two-dimensional analog of the Debye-- Hooker potential. 

The divergence at I § ~ is due to the fact that a point model of the vortices is not 
applicable at small distances. To remove this divergence one may either refine (i.e., com- 
plicate) the model [5] or simply cut off the region of integration at some value Z = ~max. 
Because explicit forms for a and ax are not used in our approach, we will simply assume be- 

low that they are bounded. 

From (5.9) to (5.12) equations for the original variables are written in the form 

o/(r ,  ot t)_~_ U (r,  t) V / ( r ,  t) = (• (r,  t) -+- (x2c)l/2a -1 X 

X ~ dr ln  (rl,  t) B (r - -  r l)  : V V / ( r ,  t) - -  (• (r, t) ~ drxB (r - -  r 0 : V W 1 / ( r l ,  t), 

5.13) 
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where B(r -- rl) = e • VJr -- r~]e • V (Ir -- r~[) is a second rank tensor and the colon denotes 

the tensor scalar product. 

6. We consider some qualitative properties of our equation. Since a, al > 0, the first 
term on the right-hand side of (5.13) containing the Laplacian gives a positive diffusion of 
the vortex distribution. The components of the tensor B(r -- r~) form the quantity 

a l ~ - ~  1 a V ( l ~ - ~ l )  ~ j ,  (6.1) 
( B ~ ,  %) = eih o x ~  ej~ o z  n 

where r = (xl, x2), eij is the antisymmetric tensor (e12 =- e2~ = i, e11 = e22 = 0anda sum- 
mation from 1 to 2 is implied over repeating indices. It can be verified directly that the 
form (6.1) is nonnegative. Using this, it can be shown for a continuous n(r, t) that the 
first and second terms on the right-hand side of (5.13) define an elliptic operator of second 
order whose sign depends on the distribution f(r, t) and can be different at different points 
in the fluid. The sign of the last term is given by the local value of n(r, t). 

This means that (5.13) can describe local decay processes (positive diffusion) as well 
as creation processes (negative diffusion) of the large-scale vortex structure. As is well 
known [19] the latter effect is identified with the phenomenon of negative viscosity. 

It can also be shown that over the entire fluid the solution (5.13) relaxes to a station- 
ary distribution. We consider the entropy production 

S (t) . . . .  J" d r / ( r ,  t) In / (r, t) ( 6 . 2 )  

during the evolution of the distribution. We will assume that when r -~ ~, f(r, t) decays 
sufficiently rapidly, along with its derivatives. We multiply (5.13) by (I + in f(r, t) and 
integrate over all space. After some transformations, the equation for entropy balance takes 
the form 

dtdS _ S drvU (r, t) / (r, t)-i (• a~a -~ ~ dr [r (r, t)] -~ [V/(r,  t)] ~ + 

+ (I/2) (• a -1 i J" d r d h v v  : B (r --  r l ) [ ln ] (r, t) --  In / (h ,  t)] [1 (r, t) --  
( 6 . 3 )  

- -  ] (rl ,  t)] -~- (~2C)1/2 a - 1  J J  d r d h B  (r - -  r j  : V ~ / ( h ,  t) Vlf  (1"1, t ) [ ]  (r, t ) ] - l x  

• n (r, t) + (• a - 1  S J" d r d h v v  : B (r -- h)  ] (rl, t) rt (r, t). 

In order to integrate the last two terms in (5.13) by parts, a symmetrization is performed. 

Since the fluid is incompressible VU(r, t) = 0 and the convective terms gives zero con- 
tribution to the entropy production. The positive contribution of the second term on the 
right-hand side of (6.3) is obvious. The third term is also positive-definite because VV : 
B(r --rl) = Ir -- r~l-3~ 0 and we have the inequality [in f(r, t) -- in f(rl, t)][f(r, t) -- f 
r~, t)] ~> 0. 

Because (6.1) and (6.4) are positive-definite, the sign of the last two integrals in 
(6.3) depends only on the behavior of the function n(r, t). From the quasineutrality condi- 
tion drf(r, t) = 0 and the assumed nature of the decay of f(r, t) in the limit r § ~, it 
follows that negative contribution of these integrals will be confined to the outer regions 
of the flow where the other parts of the integrands go to zero rapidly. It then follows that 
the total contribution of these integrals in the entropy production will either be nonnega- 
tive or at worst, close to zero in absolute value. 

Thus, for the evolution of f(r, t) satisfying (5.13), the entropy (6.2) monotonically 
(in a general sense) increases. On the other hand, from the convergence of the integral 
Sdrf(r, t) < ~ it can easily be shown [20] that the functional (6.2) is bounded. Thus in 
the evolution process the solution (5.13) goes to a stationary distribution. 

Analysis of the results of numerical experiments [2, 4] with conditions close to the 
assumptions made here show that (5.13) correctly gives the evolution of a large system of 
point vortices confined to a plane. 

The author thanks N. N. Yanenko for interest in the work. 
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STATISTICAL PROPERTIES OF BURSTS OF TURBULENT FLUCTUATIONS 

A. A. Praskovskii UDC 532.517.4 

The energy spectra, probability distribution functions (DFs), and the associated moment 
and scale numerical characteristics are used to describe turbulent fluctuations at a certain 
point of a flow in statistical fluid mechanics. However, these functions do not describe the 
instantaneous disturbances generated in turbulent flows; these disturbances are particularly 
important in a number of engineering applications. 

An alternative approach to the investigation of turbulence is possible, consisting in 
the analysis of bursts, i.e., events where the fluctuation component of the flow velocity 
exceeds a certain prescribed level. Apart from practical applications, the burst characteris- 
tics determined by the joint distribution of the probabilities of the fluctuation velocity 
of the flow and its derivative are important from the standpoint of methods being developed 
at the present time for the description of turbulent flows on the basis of the DF equations. 
This kind of approach can be used in studying the laminar-to-turbulent flow transition, which 
is characterized by the inception of randomly distributed local regions with large gradients 
of the parameters. 

The theory of bursts of stochastic processes, which was formulated primarily for radio- 
physical applications (see, e.g., [I]), is cur~_~ ~ly in a state of continuing development. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 38-45, May-June, 1983. Original article submitted March 23, 1982. 
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